top of page
andrewsdg3

Rocket Doc Notes for Week of July 4, 2021

Global Warming Overview


Enclosed is an excellent article by David Fork and Ross Koningstein published in the July 2021 Spectrum IEEE Magazine. It covers pertinent topics and I have added my comments in Parenthesis.


“Seven years ago, we published an article in IEEE Spectrum titled “What It Would Really Take to Reverse Climate Change.”


We described what we had learned as Google engineers who worked on a well-intentioned but ultimately failed effort to cut the cost of renewable energy. We argued that incremental improvements to existing energy technologies weren’t enough to reverse climate change, and we advocated for a portfolio of conventional, cutting-edge, and might-seem-crazy R&D to find truly disruptive solutions. We wrote: “While humanity is currently on a trajectory to severe climate change, this disaster can be averted if researchers aim for goals that seem nearly impossible. We’re hopeful, because sometimes engineers and scientists do achieve the impossible.”


Today, still at Google, we remain hopeful. And we’re happy to say that we got a few things wrong. In particular, renewable energy systems have come down in price faster than we expected, and adoption has surged beyond the predictions we cited in 2014.

Our earlier article referred to “break- through” price targets (modeled in collaboration with the consulting firm McKinsey & Co.) that could lead to a 55 percent reduction in U.S. greenhouse gas emissions by 2050. Since then, wind and solar power prices have met the targets set for 2020, while battery prices did even better, plummeting to the range predicted for 2050. These better-than-expected price trends, combined with cheap natural gas, caused U.S. coal usage to drop by half. The result: By 2019, U.S. emissions had fallen to the level that the McKinsey scenario forecast for 2030—a decade sooner than we predicted.


And thanks to this progress in decarbonizing electricity production, engineers are seeking and finding numerous opportunities to switch existing systems based on the combustion of fossil fuels to lower-carbon electricity. For example, electric heat pumps are becoming a cost-effective replacement for heating fuel, and electric cars are coming down in price and going up in range.


Even with all this progress, though, we’re still on a trajectory to severe climate change: a 3 °C rise by 2100. Many countries are not meeting the emissions reductions they pledged in the 2015 Paris Agreement. Even if every country were to meet its pledge, it would not be enough to limit planetwide warming to 1.5 °C, which most experts consider necessary to avoid environmental disaster. Meeting pledges today would require a drastic slashing of emissions. If these wholesale emission reductions don’t happen, as we think likely, then other strategies will be needed to keep temperatures within bounds.


Here are some key numbers: To reverse climate change, even partially, we’ll need to bring atmospheric carbon dioxide levels down to a safer threshold of 350 parts per million; on Earth Day 2021 the figure stood at 417ppm.We estimate that meeting that target will require removing on the order of 2,000 gigatons of CO2 from the atmosphere over the next century. That wholesale removal is necessary both to draw down existing atmospheric CO2 as well as the CO2 that will be emitted while we transition to a carbon-negative society (one that removes more carbon from the atmosphere than it emits). Note that this is an important fact often overlooked.


Our opening battles in the war on climate change need engineers to work on the many existing technologies that can massively scale up. As already illustrated with wind, solar, and batteries, such scale-ups often bring dramatic drops in costs. Other industrial sectors require technological revolutions to reduce emissions. If you experiment with your own mix of climate-mitigation techniques using the En-ROADS interactive climate tool, you’ll see how many options you have to max out to change our cur- rent trajectory and achieve 350 ppm CO2 levels and a global temperature rise of no more than 1.5 °C.


So, what’s an engineer who wants to save the planet to do? Even as we work on the changeover to a society powered by carbon-free energy, we must get serious about carbon sequestration, which is the stashing of CO2 in forests, soil, geological formations, and other places where it will stay put. And as a stopgap measure during this difficult transition period, we will also need to consider techniques for solar- radiation management—deflecting some incoming sunlight to reduce heating of the atmosphere. These strategic areas require real innovation over the coming years.


To win the war on climate change we need new technologies too.

We’re optimistic that the needed technology will emerge within a couple of decades. After all, engineers of the past took mere decades to design engines of war, build ships that could circle the globe, create ubiquitous real-time communication, speed up computation over a trillion- fold, and launch people into space and to the moon. The 1990s, 2000s, and 2010s were the decades when wind-power, solar power, and grid-scale batteries respectively started to become mainstream. As for which technologies will define the coming decades and enable people to live sustainably and prosperously on a climate-stable planet, well, in part, that’s up to you. There’s plenty to keep engineers hard at work. Are you ready?


To quickly replace fossil fuels alternate energy- sources need to be cost effective. This goal has recently been reached for wind and PV as shown in the figure below.



Before we get to the technology challenges that need your attention, allow us to talk for a moment about policy. Climate policy is essential to the engineering work of decarbonization, as it can make the costs of new energy technologies plummet and shift markets to low- carbon alternatives. For example, by 2005, Germany was offering extremely generous long-term contracts to solar-energy producers (at about five times the average price of electricity in the United States). This guaranteed demand jump- started the global market for solar photo­ voltaic (PV) panels, which has since grown exponentially. In short, Germany’s temporary subsidies helped create a sus­tainable global market for solar panels. People often underestimate how much human ingenuity can be unleashed when it’s propelled by market forces.


This surge in solar PV could have hap­pened a decade earlier. Every basic process was ready by 1995: Engineers had mastered the technical steps of making silicon wafers, diffusing diode junctions, applying metal grids to the solar­ cell surfaces, pas­sivating the semiconductor surface to add an antireflective coating, and laminating modules. The onlymissing piece was sup­portive policy. We can’t afford any more of these “lost decades.” We want engineers to look at energy systems and ask themselves: Which technologies have everything they need to scale up and drive costs down— except the policy and market?


Engineers worked hard to master the steps needed to make solar PV, but they then lost a decade waiting for supportive policy that drove prices down to make a market. We can’t afford more lost decades.


This point really can’t be stressed enough. A supportive government policy is necessary to drive the economies of scale necessary to deliver alternate energy systems that are cost-effective relative to existing fossil-fuels powerplants. This has been terribly lacking for nuclear powerplants, flywheel energy storage units, and geothermal powerplants. This must change.


Economics Nobel laureate William Nordhaus argues that carbon pricing is instrumental to tackling climate change in his book The Climate Casino (Yale Uni­versity Press, 2015). Today, carbon pricing applies to about 22 percent of global carbon emissions. The European Union’s large carbon market, which currently prices carbon at above €50 per ton (US $61), is a major reason why its air­ lines, steel manufacturers, and other industries are currently developing long­ term decarbonization plans. But econo­mist Mark Jaccard has pointed out that while carbon taxes are economically most efficient, they often face outsize political opposition. Climate ­policy pioneers in Canada, California, and elsewhere have therefore resorted to flexible (albeit more complicated) regulations that provide a variety of options for industries to meet decarbonization objectives.


Engineers may appreciate the sim­plicity and elegance of carbon pricing, but the simplest approach is not always the one that enables progress. While we engineers aren’t in the business of making policy, it behooves us to stay informed and to support policies that will help our industries flourish.


Tough decarbonization chal­lenges abound for ambitious engineers. There are far too many to enumerate in this article, so we’ll pick a few favorites and refer the reader to Project Drawdown, an organization that assesses the impact of climate efforts, for a more complete list.

Let’s consider air travel. It accounts for 2.5 percent of global carbon emissions, and decarbonizing it is a worthy goal. But you can’t simply capture airplane exhaust and pipe it underground, nor are engi­neers likely to develop a battery with the energy density of jet fuel anytime soon. So, there are two options: Either pull CO2 directly from the air in amounts that offset airplane emissions and then stash it somewhere, or switch to planes that run on zero ­carbon fuels, such as biofuels. In my book biofuels emit just as much CO2 as kerosene. The fact that it didn’t come out of the ground makes no difference in ppm of CO2 in the atmosphere.


One interesting possibility is to use hydrogen for aviation fuel. Airbus is cur­rently working on designs for a hydrogen­ powered plane that it says will be in commercial service in 2035. Most of today’s hydrogen is decidedly bad for the climate, as it’s made from fossil methane gas in a process that emits CO2. But clean hydrogen production is a hot research topic, and the 200­year­old technique of water electrolysis—in which H2O is split into oxygen and hydrogen gas—is getting a new look. If low ­carbon electricity is used to power electrolysis, the clean hydrogen produced could be used to manufacture chemicals, materials, and synthetic fuels. Policy, particularly in Europe, Japan, and Australia, is driving hydrogen research forward. For example, the European Union published an ambi­tious strategy for 80 gigawatts of capacity in Europe and neighboring countries by 2030. Engineers can help drive down prices; the first goal is to reach $2 per kilogram (down from about $3 to $6.50 per kilogram now), at which point clean hydrogen would be cheaper than a com­bination of natural gas with carbon cap­ture and sequestration. $2 per kilogram is a worthy stretch goal for hydrogen production.


Climate ­friendly hydrogen could also lead to another great accomplishment: decarbonizing the production of metals. The Stone Age gave way to the Iron Age only when people figured out how to deploy energy to remove the oxygen from the metal ores found in nature. Europe was deforested in part to provide charcoal to burn in the crucibles where metal­ smiths heated iron ore, so it was consid­ered an environmental win when they switched from charcoal to coal in the 18th century. Today, thanks to the Euro­ pean Union’s carbon market, engineers are piloting exciting new methods to remove oxygen from metal ore using hydrogen and electric­ arc furnaces. Applications for hydrogen in our future economy is shown in the figure below.



There’s still much work to do in decar­bonizing the generation of electricity and production of clean fuels. Worldwide, humans use roughly one zettajoule per year—that’s 1021 joules every year. Satis­fying that demand without further con­ tributing to climate change means we’ll have to drastically speed up deployment of zero­-carbon energy sources. Providing 1 ZJ per year with only solar PV, for exam­ple, would require covering roughly 1.6 percent of the world’s land area with panels. Doing it with nuclear energy alone would necessitate building three 1­000 megawatt plants every day between now and 2050. It’s clear that we need a host of cost­ effective and environmentally friendly options. This shows why achieving zero-carbon emission by 2050 is not realistic and why we need an alternate plan B that both sequesters CO2 and increases reflection of sunlight.


While we consider the options, we’ll also need to make sure those sources of energy are steady and reliable. Critical infrastructure such as hospitals, data centers, airports, trains, and sewage plants need around ­the ­clock electricity. (Google, for one, is aggressively pursuing 24/7 carbon-­free energy for its data cen­ters by 2030.) Most large industrial pro­cesses, such as the production of glass, fertilizer, hydrogen, synthesized fuels, and cement, are currently cost­ effective only when plants are operated nearly continuously, and often need high­ temperature process heat.


To provide that steady carbon-­free electricity and process heat, we should consider new forms of nuclear power. In the United States and Canada, new poli­cies support advanced nuclear ­energy development and licensing. Dozens of advanced nuclear ­fission companies offer engineers a variety of interesting chal­lenges, such as creating fault­ tolerant fuels that become less reactive as they heat up. Other opportunities can be found in designing reactors that recycle spent fuel to reduce waste and mining needs, or that destroy long-­lived waste components via new transmutation technologies.


Engineers who are drawn to really tough quests should consider nuclear fusion, where the challenges include con­ trolling the plasma within which the fusion occurs and achieving net electric power output. This decade’s competition in advanced nuclear ­energy technologies may produce winners that get investors excited, and a new round of policies could push these technologies down the cost curve, avoiding a lost decade for advanced nuclear energy.


Global-scale climate preser­vation is an idea that engi­neers should love, because it opens up new fields and career opportunities. Earth’s climate has run open loop for over 4 billion years; we are lucky that our planet’s wildly fluctu­ating climate was unusually stable over the 10,000 years that modern civiliza­tion arose and flourished. We believe that humankind will soon start wrapping a control loop around earth’s climate, designing and introducing controlled changes that preserve our society.


The basic rationale for climate pres­ervation is to avoid irreversible climate changes. The melting of the Greenland ice sheet could raise sea levels by 6 meters, or the runaway thawing of permafrost could release enough greenhouse gas to add an additional degree of global warm­ ing. Scientists agree that continuation of unchecked emissions will trigger such tipping points, although there’s uncer­tainty about when that would happen. The economist Nordhaus, applying the conservative precautionary principle to climate change, argues that this uncer­tainty justifies earlier and larger climate measures than if tipping­ point thresholds were precisely known.


We believe in aggressively pursuing CO2 removal because the alternative is both too grim and too expensive. Some approaches to CO2 removal and seques­tration are technically feasible and are now being tried. Others, such as ocean fertilization of algae and plankton, caused controversy when attempted in early experiments, but we need to learn more about these as well.


The Intergovernmental Panel on Cli­mate Change’s recommendation for cap­ping warming at 1.5 °C requires cutting net global emissions almost in half by 2030, and to zero by 2050, but nations are not making the necessary emission cuts. (By net emissions, we mean actual CO2 emis­sions minus the CO2 that we pull out of the air and sequester.) The IPCC estimates that achieving the 1.5 °C peak temperature goal and, over time, drawing CO2 concen­trations down to 350 ppm actually requires negative net emissions of more than 10 Gt of CO2 per year within several decades—and this may need to continue as long as there remain atmospheric litter­ bugs who continue to emit CO2.


The En­ROADS tool, which can be used to model the impact of climate­ mitigation strategies, shows that limiting warming to 1.5 °C requires maxing out all options for carbon sequestration— including biological means, such as refor­estation, and nascent technological methods that aren’t yet cost effective.


We need to sequester CO2, in part, to compensate for activities that can’t be decarbonized. Cement, for example, has the largest carbon footprint of any man­ made material, creating about 8 percent of global emissions. Cement is manufac­tured by heating limestone (mostly cal­cite, or CaCO3), to produce lime (CaO). Making 1 mT of cement lime releases about 1 mT of CO2. If all the CO2 emis­sions from cement manufacturing were captured and pumped underground at a cost of $80 per mT, we estimate that a 50-­pound bag (about 23 kg) of concrete mix, one component of which is cement, will cost about 42 cents more. Such a price change would not stop people from using concrete nor significantly add to building costs. What’s more, the gas coming out of smokestacks at cement plants is rich in CO2 compared with the diluted amount in the atmosphere, which means it’s easier to capture and store.

Capturing cement’s emissions will be good practice as we get ready for the bigger lift of removing 2,000 Gt of CO2 directly from the atmosphere over the next 100 years. Therein lies one of the century’s biggest challenges for scientists and engineers. A recent Physics Today article estimated the costs of directly capturing atmospheric CO2 at between $100 and $600 per ton. The process is expensive because it requires a lot of energy: Direct air capture involves forc­ing enormous volumes of air over sor­bents, which are then heated to release concentrated CO2 for storage or use.


We need a price breakthrough in carbon capture and sequestration that rivals what we have seen in wind power, solar energy, and batteries. We estimate that at $100 per mT, removing those 2,000 Gigametrictons of CO2 would account for roughly 2.8 percent of global GDP for 80 years. Compare that cost with the toll of hitting a climate tipping point, which no amount of spending could undo.

Our opening battles in the war on climate change need engineers to work on the existing technologies that can massively scale up. But to win the war, we’ll need new technologies as well.


In principle, there are enough subter­ranean rock formations to store not just gigatons but teratons of CO2. But the scale of the sequestration required, and the urgency of the need for it, calls for outside-the-box thinking. For example, massive ­scale, low­ cost carbon removal may be possible by giving nature an assist. During the planet’s Carboniferous period, 350 million years ago, nature sequestered so much carbon that it reduced atmo­spheric CO2 from over 1,000 ppm to our preindustrial level of 260 ppm (and cre­ated coal in the process). The mechanism: Plants evolved the fibrous carbon­ containing material lignin for stems and bark, millions of years before other crea­tures evolved ways to digest it. Now con­sider that the ocean absorbs and almost completely reemits about 200 Gt of CO2 per year. If we could prevent 10 percent of this reemission for 100 years, we would meet the goal of sequestering 2,000 Gt of CO2. Perhaps some critter in the ocean’s food chain could be altered to excrete an organic biopolymer like lignin that’s hard to metabolize, which would settle to the seafloor and sequester carbon. Phyto­ plankton reproduce quickly, offering a quick path to enormous scale. If our legacy of solving climate change is a few millimeters of indigestible carbon­ rich poop at the bottom of the ocean, we’d be okay with that.


A measure to limit warming until we’ve made a dent in reducing atmospheric CO2 levels. Such efforts could avoid the worst physical and economic impacts of temperature rise and would be decom­missioned once the crisis has passed. For example, we could reduce the formation of airplane contrails, which trap heat, and make roofs and other surfaces white to reflect more sunlight. These two mea­sures, which could reduce our expected planetary warming by about 3 percent, would help the public better appreciate that our collective actions affect climate.

There are more ambitious proposals that would reflect more sunlight, but there is much to debate about the posi­tive and negative consequences of such actions. We believe that the most respon­sible path forward is for engineers, chem­ists, biologists, and ecologists to test all the options, particularly those that can make a difference at a planetary scale. Unfortunately, reflecting sunlight has become a hot button for the Green Revolution Movement and they are actively fighting even small-scale testing of colloids in the upper atmosphere. Evidently, they believe they can meet the 2050 zero-carbon date and don’t believe in back-ups.


“We don’t claim to know which tech­nologies will prevent a dystopian planet that’s over 2° C warmer. But we fervently believe that the world’s engineers can find ways to deliver tens of terawatts of carbon-­free energy, decarbonize indus­trial processes, sequester vast amounts of CO2, and temporarily deflect the neces­sary amounts of solar radiation. Effective use of policies that support worthy inno­vations can help move these technologies into place within the next three or four decades, putting us well on our way to a stable and livable planet. So, engineers, let’s get to work. Whether you make machines or design algorithms or analyze numbers, whether you tinker with biology, chemistry, physics, computers, or electri­cal engineering, you have a role to play.” This is an excellent article that covers almost every aspect of our Global Warming problem. I just wish it were required reading for our Congressional critters.


Thanks for Reading,

Dana Andrews

retiredrocketdoc.com

11 views0 comments

Recent Posts

See All

Comments


bottom of page